
REDUCING LANGUAGE CONFUSION FOR CODE-SWITCHING SPEECH RECOGNITION
WITH TOKEN-LEVEL LANGUAGE DIARIZATION

Hexin Liu1,2, Haihua Xu1, Leibny Paola Garcia3, Andy W. H. Khong2, Yi He1, Sanjeev Khudanpur3

1Bytedance
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

3CLSP and HLT-COE, Johns Hopkins University, USA

ABSTRACT

Code-switching (CS) occurs when languages switch within a
speech signal and leads to language confusion for automatic
speech recognition (ASR). We address the problem of lan-
guage confusion for improving CS-ASR from two perspec-
tives: incorporating and disentangling language information.
We incorporate language information within the CS-ASR
model by dynamically biasing the model with token-level
language posteriors corresponding to outputs of a sequence-
to-sequence auxiliary language diarization (LD) module. In
contrast, the disentangling process reduces the difference be-
tween languages via adversarial training so as to normalize
two languages. We conduct experiments on the SEAME
dataset. Compared to the baseline model, both the joint op-
timization with LD and the language posterior bias achieve
performance improvement. Comparison of the proposed
methods indicates that incorporating language information
is more effective than disentangling for reducing language
confusion in CS speech.

Index Terms— code-switching, automatic speech recog-
nition, token, language diarization, language posterior

1. INTRODUCTION

Code-switching (CS) refers to the switching of languages
within a spontaneous multilingual recording. Although exist-
ing automatic speech recognition (ASR) methods have shown
to achieve good performance on monolingual speech [1, 2],
CS-ASR is still a challenge due to language confusion arising
from code switches and the lack of annotated data.

Language information is often incorporated into CS-ASR
models to tackle challenges associated with language con-
fusion. In [3], language identification (LID) serves as an
auxiliary task which enriches the shared encoder with lan-
guage information. A bi-encoder transformer network was
proposed in [4], where two encoders are pre-trained on mono-
lingual data independently to decouple the modeling of Man-
darin and English for the capture of language-specific infor-
mation. This dual-encoder CS-ASR approach has shown to
be effective and several methods were subsequently proposed

based on this framework [5, 6, 7]. A language-specific at-
tention mechanism has also been proposed to reduce mul-
tilingual contextual information for a transformer encoder-
decoder CS-ASR model [8, 9]. In this approach, monolingual
token embeddings are separated from code-switching token
sequences before being fed into their respective self-attention
modules within the decoder layers.

It is useful to note that the dual-encoder approach, in gen-
eral, performs LID at frame-level units—frame-level LID out-
puts are assigned to the outputs of language-specific encoders
before the weighted sum in the mixture-of-experts interpola-
tion process. The frame-level LID, however, is not desirable
since the LID performance generally degrades with shorter
speech signals [10, 11]. In addition, CS can be regarded
as a speaker-dependent phenomenon [12], where languages
within a CS speech signal share information such as the ac-
cent and discourse markers. Therefore, the language-specific
attention mechanism may lead to cross-lingual information
loss while learning monolingual information. Due to the na-
ture of languages and their transitions in multilingual record-
ings, exploiting CS approaches at a lower-granularity token
level would be more appropriate for CS-ASR.

Language diarization (LD), as a special case of LID,
involves partitioning a code-switching speech signal into
homogeneous segments before determining their language
identities [13, 14]. In our work, LD is reformulated into a
sequence-to-sequence task similar to that of ASR to capture
token-level language information. Inspired by the success of
utterance-level one-hot language vector for multilingual ASR
[15, 16], we propose to reduce language confusion within CS
speech by supplementing the token embeddings with their
respective soft language labels—token-level language pos-
teriors predicted by the LD module—before feeding these
embeddings into the ASR decoder. Since two languages in
a CS scenario can be auditorially similar due to the accent
and tone of the bilinguist, language posteriors are expected
to convey more language information than one-hot language
label vectors. Moreover, to explore the effect of language in-
formation for CS-ASR, we also propose a second technique to
disentangle the language information from the encoder mod-IC
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ule via adversarial training. The disentangling process aims
to normalize two languages such that language confusion
resulting from CS can be decreased. Performance evalua-
tions of the proposed methods allow one to gain insights into
how language information reduces language confusion for
CS-ASR.

2. THE HYBRID CTC/ATTENTION ASR MODEL

The hybrid CTC/attention ASR model comprises an encoder
module, a decoder module, and a connectionist temporal clas-
sification (CTC) module [2, 17]. In our work, the encoder
and decoder modules comprise conformer encoder layers and
transformer decoder layers [18, 19], respectively.

Given a speech signal, we define its acoustic features
X = (xt ∈ RF |t = 1, . . . , T ) and token sequence W =
(wn ∈ V|n = 1, . . . , N), where V is a vocabulary of size
V , T and N are the lengths of acoustic features and token
sequence, respectively. These tokens are transformed into
D-dimensional token embeddings W = (wn ∈ RD|n =
1, . . . , N) before being fed into the decoder module. The en-
coder generates H = (ht ∈ RD|t = 1, . . . , T1) from inputs
X, which are then used as inputs for the decoder and CTC
modules. During training, masked self-attention of the token
embeddings and the cross-attention between hidden output
and token embeddings are performed within the decoder
layer. Here, the masked self-attention process prevents the
current tokens from attending to future tokens. The decoder
predicts the next token wn based on historical tokens w1:n−1

and H via

p (wn|w1:n−1,X) = Decoder (w1:n−1,H) , (1)

where p(wn|w1:n−1,X) is the posterior of decoding wn given
acoustic features and historical tokens, and Decoder(·) de-
notes the transformer-based ASR decoder. The model is opti-
mized via a multi-task objective function

Lasr = αLctc + (1− α)Latt, (2)

where Lctc and Latt denote the CTC loss and encoder-
decoder cross-entropy loss with label smoothing, respec-
tively, and α is a parameter associated with multi-task learn-
ing. The decoding process is defined to maximize the linear
combination of the logarithmic CTC and attention objectives

Ŵ = argmax
W

{
αlogpctc (W |X)+(1− α) logpatt (W |X)

}
. (3)

3. REDUCING LANGUAGE CONFUSION

3.1. Sequence-to-sequence language diarization

As shown in Fig. 1, given the encoder outputs H and the to-
ken sequence W with the corresponding token embeddings
Wld = (wld

n ∈ RD|n = 1, . . . , N), we propose to de-
code the token-level language labels L = (ln ∈ V ld|n =
1, . . . , N) of W via a transformer decoder being denoted as

Fig. 1. The hybrid CTC/attention model with (a) incorporat-
ing language information using language posterior bias, and
(b) disentangling language via adversarial training.

“LD decoder” in the proposed model. Here, V ld denotes the
language vocabulary of size V ld.

While tokens within a sequence possess contextual infor-
mation for the ASR task, they share the language identities in
the LD task, i.e., they should either be of the same or differ-
ent languages. Such information is expected to be available
in both self-attention and cross-attention processes. In addi-
tion, masking future tokens is required when training the ASR
decoder to minimize the mismatch between training and de-
coding. Masking future tokens during training, however, re-
sults in a lower triangular self-attention weight matrix leading
to language-related information loss. Therefore, we propose
to utilize the complete token sequence to train the LD de-
coder during the self-attention process if the LD decoder par-
ticipates in only multi-task optimization but not the decoding
process. To this end, we have

p (ln|w1:N ,X) = Decoderld
(
wld

1:N ,H
)
, (4)

where Decoderld(·) denotes the LD decoder. On the other
hand, if the LD decoder participates in the decoding phase,
future context should be masked to reduce the mismatch be-
tween training and decoding. The LD decoder is then jointly
optimized with the hybrid CTC/attention CS-ASR model via

Ljoint = αLctc + (1− α)Latt + βLld, (5)

where β is a multi-task learning parameter, and Lld is a
label-smoothed cross-entropy loss between the predicted and
ground-truth language labels for the LD decoder.

3.2. Language posterior bias

The utterance-level language vector has shown to be effec-
tive for multilingual ASR [15, 16]. Since intra-sentence code-
switching occurs at word level, we propose to bias the ASR
output using token-level language posteriors predicted by the
LD decoder as shown in Fig. 1 (a).
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Given historical tokens w1:n−1 and hidden output H, the
LD decoder generates a V ld-dimensional language posterior
vector p(ln−1|w1:n−1,X) after a softmax function. Token
embedding wn−1 is subsequently concatenated with its lan-
guage posterior vector p before being fed into the ASR de-
coder. The ASR decoder output is next computed via

w′
n−1 = Concat

(
wn−1,p (ln−1|w1:n−1,X)

)
, (6)

p (wn|w1:n−1,X) = Decoder
(
w′

1:n−1,H
)
, (7)

where Concat(·) denotes the concatenation operation and
W′ = (w′

n ∈ RD+V ld |n = 1, . . . , N) are input token
embeddings of the ASR decoder which are subsequently pro-
jected back to D dimensions by a linear layer. The model
is optimized via (5) and the decoding process is similar to
(3) but with input token embeddings W of the ASR decoder
being replaced with W′.

3.3. Disentangling with adversarial training

In contrast to incorporating language information, disentan-
gling language information aims to normalize the two lan-
guages by reducing the difference between them. To disen-
tangle language information from the encoder, we employ a
gradient reversal layer (GRL) between the encoder and LD
decoder as shown in Fig. 1(b). The GRL was originally pro-
posed for unsupervised domain adaptation in [20]—it remains
in the forward process while the gradient is being reversed
during backpropagation. In our CS-ASR context, the model
achieves adversarial training that reduces the language infor-
mation within the encoder while optimizing the LD decoder
to be discriminative.

4. DATASET, EXPERIMENT, AND RESULTS

4.1. Dataset and experiment setup

We conducted all experiments on the SEAME dataset—a
Mandarin-English code-switching corpus containing spon-
taneous conversational speech [21]. Both intra- and inter-
sentence code-switching speech exist within this dataset. We
divide this dataset into a 98.02-hour training set, a 5.09-hour
validation set, and two test sets devman and devsge in the same
manner as [3]. Details of the test sets are presented in Table 1.

We implemented the models and evaluated them on ES-
Pnet 1 [22]. During training and inference, we followed the
experiment setup of the espnet2 SEAME recipe with regard to
data preprocessing and model configuration. Speech pertur-
bation (with factors 0.9, 1.0, and 1.1) and SpecAugment are
applied as data augmentation [23, 24]. Words are transformed
into a total of V = 5, 628 tokens including 3,000 English
byte-pair encoding (BPE) tokens, 2,624 Mandarin characters,
and 4 special tokens for unk, noise, blank, and sos/eos. All
tokens are transformed to build V ld comprising e for English
BPEs, m for Mandarin characters, sos/eos, and other for other

1Source code: https://github.com/Lhx94As/reducing language confusion

Table 1. Details of two test sets divided from SEAME

Speakers Hours Duration ratio (%)
Man Eng CS

devman 10 7.49 14 7 79
devsge 10 3.93 6 41 53

Fig. 2. Performance evaluation of the CS-ASR-LD models
with different β values by employing MER (%), where or-
ange and green lines denote training the LD decoders with
and without future context in the self-attention process, re-
spectively.

tokens. Tokens in V ld are used as LD outputs. We extracted
F = 83 dimensional features comprising 80-dimensional log-
fbanks and 3-dimensional pitch for each speech segment be-
fore applying global mean and variance normalization.

The baseline model is a hybrid CTC/Attention ASR
model comprising twelve conformer encoder layers and six
transformer decoder layers [18, 19, 25]. The proposed LD
decoder employs the same configuration as the ASR decoder.
All self-attention encoder and decoder layers have four atten-
tion heads with input and output dimensions being D = 256,
and the inner layer of the position-wise feed-forward network
is of dimensionality 2048. The language model (LM) is a
sixteen-layer transformer model with each attention layer
comprising eight heads. Parameters α = 0.3 and a label
smoothing factor of 0.1 are used in (2) and (5). All models
are trained for 50 epochs on two V100 GPUs. During infer-
ence, the 10-best models during validation are averaged. We
adopted the 10-best beam search method with α = 0.4 in (3).
The proposed systems are evaluated by employing mix error
rate (MER) comprising word error rate (WER) for English
and character error rate (CER) for Mandarin.

4.2. Results of jointly optimizing CS-ASR and LD

We denote the hybrid CTC/attention CS-ASR model which
is jointly trained with LD as CS-ASR-LD. The CS-ASR-LD
model is evaluated on devman and devsge to explore the effect
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of the auxiliary LD task with different β values. In addition,
we compare the CS-ASR performance with different LD de-
coders trained on tokens with and without future context, re-
spectively. The above results are presented in Fig. 2.

As opposed to the CS-ASR-LD model with an LD de-
coder that masks future context during training, those with the
LD decoder trained on full context consistently exhibit lower
MER on devman than the baseline. In addition, the CS-ASR-
LD model with an LD decoder that does not mask future con-
text during training achieves moderate performance improve-
ment on devsge with high β values compared to the baseline.
The best overall performance of 16.3% and 23.3% on devman
and devsge, respectively, is achieved when training the LD
decoder on full context with β=0.8. Since devman contains
mostly CS speech, the above results indicate that incorporat-
ing discriminative language information benefits ASR perfor-
mance on CS speech.

4.3. Results of biasing CS-ASR with language posterior

We evaluate the hybrid CTC/attention model with language
posterior bias (LPB), which is the LD decoder output, on
devman and devsge. These results and ablation studies are
shown in Table 2 with β = 0.8. Here, employing LPB with-
out joint optimization with LD is achieved by intercepting the
backpropagation from the LD decoder to the encoder.

Compared with the baseline, employing either LD or LPB
exhibits higher performance on devman which contains mainly
CS test speech. Systems S2.4 and S2.5 suffer from moderate
performance degradation on devsge. Since devsge comprises
predominantly monolingual speech with less language con-
fusion compared to devman, the above results imply that uti-
lizing token-level language information, while beneficial for
CS-ASR, may not contribute effectively to monolingual ASR.

System S2.8 with both LD and LPB achieves the best per-
formance of 16.3% and 23.0% on devman and devsge, respec-
tively, among all systems that do not employ LM. This indi-
cates the efficacy of our proposed method. In addition, while
employing LM improves the CS-ASR performance, the pro-
posed language-aware methods do not benefit from the use of
LM as much compared to the baseline model. This also im-
plies that a language-aware LM would be more appropriate to
CS-ASR compared to the general LM [26].

4.4. Results of disentangling language information

Language information is disentangled from the CS-ASR
model via adversarial training with a GRL. We evaluated this
approach with β = 0.2, 0.5, and 0.8 and results are shown in
Table 3.

Disentangling language information from the CS-ASR
model (while maintaining the MER on devman) results in per-
formance degradation on devsge compared to the baseline.
Since devsge contains more monolingual speech than devman,
these results suggest that language information contributes to

Table 2. Performance comparison between baseline model
and those with language posterior bias (LPB) by employing
MER (%), “Future context” denotes whether the future tokens
are used or not for the LD decoder during training

Index Model β
Future
context LM MER

devman devsge
S0 baseline - - No 16.7 23.4
S1 - - Yes 16.5 23.0

S2.1
+LD

0.8 Yes No 16.3 23.3
S2.2 0.8 No No 16.6 23.5
S2.3 0.8 Yes Yes 16.2 23.1
S2.4

+LPB
0.8 Yes No 16.4 23.5

S2.5 0.8 No No 16.6 23.5
S2.6 0.8 No Yes 16.4 23.2
S2.7

+LD +LPB

0.8 Yes No 16.6 23.4
S2.8 0.8 No No 16.3 23.0
S2.9 0.8 Yes Yes 16.5 22.9

S2.10 0.8 No Yes 16.1 22.8

Table 3. Performance comparison between baseline model
and those after disentangling language information by em-
ploying MER (%), “Future context” denotes whether the fu-
ture tokens are used or not for the LD decoder during training

Index Model β
Future
context

MER
devman devsge

S0 baseline - - 16.7 23.4
S3.1

+LD+GRL
0.2 Yes 16.8 23.6

S3.2 0.5 Yes 16.7 23.7
S3.3 0.8 Yes 16.7 23.7

the CS-ASR performance even for monolingual speech. This
is because the process of ASR intrinsically encodes language-
related information such as phonotactics and syntax into the
model [27]. Reducing the language information, therefore,
may degrade the ASR performance on monolingual speech.

5. CONCLUSION

We proposed two approaches to reduce language confusion
for CS-ASR. The first method incorporates language infor-
mation using the language posterior bias, while the second
method disentangles language information via adversarial
training. Compared to the baseline model, our proposed
LPB method in conjunction with multi-task learning exhibits
higher performance on the SEAME dataset. Comparison
between the proposed LPB method and the adversarial train-
ing for CS-ASR-LD highlights the efficacy of incorporating
language information to improve CS-ASR. In addition, the
proposed language-aware CS-ASR models achieve lower per-
formance improvement after employing LM during decoding
compared to the baseline model. This indicates that general
LM may not be suitable for language-aware CS-ASR models
due to the lack of language information.
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